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SIGNIFICANCE AND EXPLANATION

We study the initial value problem for a nonlinear integrodifferential

equation of Volterra type which models the motion of an unbounded viscoelastic

bar. If the kernel in the integral term vanishes identically (which

corresponds to the case of an elastic bar), the equation reduces to an

undamped quasilinear wave equation which does not generally have globally

defined smooth solutions - no matter how smooth and small the initial data are

- due to the formation of shock waves. Under physically natural assumptions

on the kernel (which exclude the trivial case), the integral term has a

damping effect and prevents the development of shocks if the initial data and

forcing function are suitably small.

We here establish the existence of a unique, globally defined, classical

solution provided the given data are sufficiently smooth and small. Moreover,

we show that first and second order partial derivatives of the solution decay

to zero uniformly as time tends to infinity. Analogous results are already

known for bounded bars with appropriate boundary conditions, but the proofs

make crucial use of certain Poincarf inequalities which are not valid for an

unbounded bar. As far as local existence of solutions is concerned, it is

easy to circumvent this difficulty. However, some substantial modifications

are needed to show that local solutions can be continued globally. Our

analysis is based on energy estimates in conjunction with properties of

Volterra integral kernels.

The responsibility for the wording and views expressed in this descriptive
iummary lies with MRC, and not with the authors of this report.
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THE CAUCHY PROBLEM IN ONE-DIMENSIONAL NONLINEAR VISCOELASTICITY

W. J. Hrusa
1' 2 

and J. A. Nohel
I

1. Introduction

The aim of this paper is to establish global existence and decay of classical

solutions to the Cauchy problem
t

u (x't) - (u (xt)) + I0 a'(t-T)f(u (XT))dT + f(x,t), < x < -, t ) 0 , (1.1)
tt x x

u(x,0) U0 (X), ut(x,0) - uI(x), < x < , (1.2)

for suitably smooth and small data u0, uI , f. Here *, 4, and a are assigned smooth

functions, subscripts x and t indicate partial differentiation, and a prime denotes the

derivative of a function of a single variable. Throughout this paper all derivatives

should be interpreted in the distributional sense. Moreover, when we speak of a solution

we always mean a classical solution.

The above problem serves as a model for the motion of an unbounded, homogeneous,

viscoelastic bar. On physical grounds, it is natural to assume that a is positive,

decreasing, and convex, with a(t) + 0 as t + -, and that

W)= *(0) - 0, '(0) > 0, *1'(0) > 0, *'(0) - aO)'(0) > 0 . (1.3)

We refer to our survey paper (5] for a discussion of the physical interpretation of (1.1)

and a much more complete summary of previous related work. (In addition, [5] contains a

proof of Theorem 1.1 in the (much simpler) special case of an exponential kernel.)

Observe that if a' E 0, then (1.1) reduces to the quasilinear wave equation

utt - f(ux)x + f . (1.4)

It is well known that (1.4), (1.2) does not generally have a global (in time) smooth

Since a' (rather than a) appears in the equation of motion, a constant can be added to
the kernel a without affecting (1.1). The normalization a() - 0 is convenient for our
purposes. The reader is cautioned that other normalizations are also used.

I
Sponsored by the United States Army under Contract No. DAG29-80-C-0041.

2
This material is based upon work supported by the National Science Foundation under Grant

No. MCS-8210950.
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solution, no matter how smooth and small the data are. (See, for example, (8] and [11].)

As explained in (5], the memory term in (1.1) has a damping effect if a' 4 0 and the

appropriate sign conditions are satisfied. However, this dampiug mechanism is quite subtle

and globally defined smooth solutions should be expected only if the data are suitably

small.

Our main interest here is in global phenomena. If the kernel is sufficiently regular,

it is a more or less routine matter to establish local existence of solutions to (1.1),

(1.2). However, the question of securing suitable global estimates is considerably more

delicate, especially for an unbounded bar.

Dafermos and Nohel (2] have established small-data global existence theorems for

analogous initial-boundary value problems corresponding to the motions of bounded

viscoelastic bodies. (They treot Neumann, Dirichlet, and mixed conditions.) However,

their argument makes crucial use of various Poincar6 inequalities and consequently is not

applicable to (1.1), (1.2).

Equations of the form (1.1) with * * have been studied by MacCamy [10], Dafermos

and Nohel (1], Staffans [16], and Hattori [4]. Small-data global existence theorems (for

bounded and unbounded bodies) are given in [101, [1], and (16]. Nonexistence of global

solutions for certain large data (of arbitrary smoothness) is established in [4]. (See

also (3], (12], and [14] for some related nonexistence results.) If 4 *, equation

(1.1) admits certain estimates which do not carry over to the general case with $

different from #. However, we know of no physical motivation for the restriction 4 .

We here establish global existence and decay of classical solutions to (1.1), (1.2)

(with * different from #), under assumptions quite similar to those used in [2] for the

case of a bounded bar. The proof combines certain estimates of Dafermos and Nohel (2]

(which remain valid for unbounded bars) with a variant of a procedure introduced by MacCamy

in (9], (10].

AS in 12], we assume

a,a',a'' e L 1(0,-), a is strongly positive definite * (1.5)

(We note that twice continuously differentiable a with (-1)Ja(J)(t) ) 0 for all t ) 0,

-2-



j - 0,1,21 a' * 0 are automatically strongly positive definite. see [13].) In addition,

we require

JG tja(tfldt < -, a'(z) 0 0 V z e I , (1.6)

where denotes the Laplace transform and 11 := {z e C : Re a ) 0). The additional

conditions (1.6) are not terribly restrictive. (This will be discussed further at the end

of Section 2.)

Regarding u0 , Ul, and f, we assume

S0 e L 2oc (R), u;, U90 , Ul .1 ;, u;- e L2(.) (1.7)
2 2

f, f x, ft e C(CO,m)i L 2R)) n L ((0,in), L2(&)) ,(1.9)

I([o)P L2(R)), f , ' f e L2(fO0,), L2(2)) (1.9)

In order to keep things reasonably simple, we have made our hypotheses on f slightly

stronger than necessary. Several similar conditions can be used in place of (1.9). (In

fact, we could assume that (1.8) holds and that f is a sum of several functions each of

which satisfies a condition in the spirit of (1.9).) Pinally, to measure the size of the

data we define

2.{u.) u + ,,,1x)2 + U WX2 + ,, 2 (.10)Uo(U 0,U1) J- {Uo(X) 2 + u0'x ~'(x u()u0 '1 x u1 d

and

j:(2 +2 + 2
F(f) :s up j, f + f + f )(x,t)dxX

tO t(1.11)

1 22
+ 0 {f2 + f2 + fx2 )(x,t)dt + (J' (1 f(x,t) dx) dt)

Our main result is

Theorem 1.1: Assume that , e C 3(R) and that (1.3), (1.5), and (1.6) hold. Then,

there exists a constant P > 0 such that for every u0 , ul, and f satisfying (1.7),

(1.8), (1.9), and

*

The symbol : indicates an equality in which the left hand side is defined by the right

hand side.

-3-

-. *1



2
U0 tu0 ,u1 ) + P(f) ( i , (1.12)

the initial value problem (1.1), (1.2) has a unique solution u e C 2(R x [0,-)) with

uxt Uto uXX' Uxt' Utt' u X Uxxt , uxttx t x xt t xxx11.13)

u C((0,) LW(R)) n L7(10,-; L(W))

In addition,

U xxOUxt,'uttOU xxxOUxxt, Uxtt, uttt e L2([O, ); i )),(.

Uxx , Uxt .utt + 0 in L2 (R) as t.+ , (1.15)

and

u xUt,u xuxtutt * 0 uniformly on R as t + . (1.16)

Remark 1.1: Assumption (1.5) implies that a' e AC[O,-). There are indications that for
- I

certain viscoelastic materials a'(t) - - t as t + 0, with 0 < a < 1. Recently,

Rrusa and Renardy [6] have studied equations of the form (1.1) under assumptions on a

which permit such singularities in a'. For the case of a bounded bar, they establish

local as well as global existence theorems. For (1.1), (1.2), they have local results, but

no global results. (Again, this is due to the lack of Poincar6 inequalities on all of

space.) Unfortunately, the techniques which we employ here to estimate lower order

derivatives make essential use of the assumption a'' e LI(0,'), and consequently we

cannot handle the case when a' is singular.

Remark 1.2: Dafermos and Nohel (2] mention possible extensions of their results to

problems involving motions of multidimensional viscoelastic bodies. The same comments

apply here. In particular, if the kernel is a scalar multiple of the identity, then a

straightforward (but tedious) modification of the proof of Theorem 1.1 can be used to

establish global existence of solutions for small data. For a three dimensional problem,

estimates on derivates of u through order 4 (rather than through order 3 as in one

dimension) would be required. However, the case of a general matrix-valued kernel A is

-4-



considerably more complicated. It is not very hard to state implicit assumptions on A

under which global existence could be established. The difficulty lies in determining

simple and direct conditions on A which would guarantee that these assumptions are

satisfied.

The remaining two sections of this paper are devoted to the proof of Theorem 1.1.

Section 2 contains some preliminary material on local solutions as well as properties of

the kernel a and several related resolvent kernels. The actual proof is presented in

Section 3.

Acknowledgements we are indebted to Professor R. L. Wheeler for some valuable suggestions

which enabled us to weaken our original assumptions on a.

2. Preliminaries

We begin by stating a local existence result for (1.1), (1.2).

iesma 2.1: Assume that e 4 6 C 3(R), a, a', a'' e Lo0g), and that there exists a

constant ± ) 0 such that

t ± v z e R . (2.1)

Let U0 1 Ul, and f satisfying (1.7), (1.6), and fxt e LI ((Oin)y L 2(R)) be given.
£toc

Then, the initial value problem (1.1), (1.2) has a unique local solution u, defined on a

maximal time interval tO,To), with

UAtUxxFUt,U tt U xU t ,Uxttiuttt U C((0,T0 )I L 2(R)) (2.2)

Moreovere if

1 2 2 2 2 2
sup (U *ut +Uxx Uxt + utt +Uxx x +

t6[0,T0 )

(2.3)

2 + u2 + Utt}(Xet)aX <

Uxxt xtt tt

then 
T

O - -.

i! -5-
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Remark 2.1: The Sobolev embedding theorem and (2.2) imply u e C2 (It X0,T)).

The proof of Lemma 2.1 is almost identical to the proof of Theorem 2.1 of [2].

Therefore, we omit the details. The only significant difference is that certain additional

estimates are needed for lower order derivatives. As far as local existence is concerned,

this causes no difficultiesi one simply expresses the lower order derivatives in terms of

initial conditions and time integrals of higher order derivatives. (Of course, such a

procedure yields time-dependent bounds and cannot be used to obtain global estimates.)

The integrability properties of several resolvent kernels associated with a are

crucial to our analysis of (1.1), (1.2). Therefore, we briefly recall a few basic

concepts. Let b e L oc [0,) be given and consider the linear (scalar) Volterra equation

y(t) + jt b(t-T)y(t)dt - g(t), t O 0 (2.4)
01

For each g e equation (2.4) has a unique solution y e L moreover,
10C Lloc

this solution is given by

y(t) - g(t) + It p(t-T)g(T)dT, t 0 0 , (2.5)

where p is the unique solution of the resolvent equation

p(t) + t b(t-T)p(T)dT - -b(t), t ) 0 • (2.6)

A classical theorem of Paley and Wiener states that if h belongs to L (0,'), then the

resolvent kernel p belongs to L (0,-) if and only if I + b(z) does not vanish for any

we shall also make use of several basic properties of strongly positive definite

kernels. A function a 8 L1 [0, ) is said to be positive definite if

It y(s) J* a(s-T)y(r)dTds ) 0 V t > 0 , (2.7)

for every y e C(0,-)u a is called strongly positive definite if there exists a constant

C > 0 such that the function defined by a(t) - Ce-t , t ) 0, is positive definite. As

the terminology suggests, strongly positive definite implies positive definite.

These definitions are generally not very easy to check directly. For our purposes

here, it is useful to know that if a belongs to L (0,-) then a is strongly positive

-6-



definite if and only if there exists a constant C > 0 such that
C

Re a(iW) ) Vw eR • (2.8)
W +1

4oreover, if a positive definite function is Rufficiently regular then statements can be

made concerning its pointwise behavior near zero. In particular, (1.5) implies

a(O) > 0 , a'(O) < 0 (2.9)

(That (1.5) implies a(O) > 0 follows easily from a(O) Re (iw. and (2.8). To
2

see that (1.5) implies a'(0) < 0, observe that lim w.2 Re a(iw) - -a'(0), as can be

verified using two integrations by parts and the Riemann-Lebesgue lema. This limit must

be strictly positive by (2.8).) See, for example, [13] and [15] for more information on

these matters.

The kernel k defined by

*'(0)k(t) + ]0 a'(t-T)*-'(0)k(T)dT - -*'(0)a'(t), t ) 0 , (2.10)

can be used to express uxx (or uxxx) in terms of utt (or uxtt) and small correction

terms through an equation quite similar to (2.5). (The fact that the leading coefficient

in (2.10) is different from one does not affect the representation formulas (2.4), (2.5),

(2.6) in a significant way. We can simply divide through by '(0) since 4'(0) ) 0.)

Thus, if k e L (0,"), bounds on uxx (or Uxxx ) can be inferred from bounds on utt

(or Uxtt). Using the Paley-Wiener theorem, (1.3), (1.5), and properties of strongly

positive definite kernels, one can establish

Lemma 2.2: Assume that (1.3) and (1.5) hold. Then, the solution k of (2.10) belongs to

L1 (0,-).

This lema was used previously by Dafermos and Nohel. See Lemma 3.2 of [2] for the proof.

In order to simplify the formulas in Lemuas 2.3 and 2.4 below, we assume, without loss

of generality, that

a'(O) -1 (2.11)

(Since a'(0) < 0, we can multiply * by -a'(0) and divide a by -a'(0) to achieve

-7-
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(2.11). Such a change does not affect the assumptions of Theorem 1.1.)

Let r denote the resolvent kernel associated with -a'', i.e. the solution of

r(t) - t a''(t-T)r(T)dT - a''(t), t ;0 a (2.12)
0 1212

It is not hard to see that r # LI(0,m), since a'(0) - -1. However, it follows from

(1.5) and (1.6) that r is the sum of a positive constant and an L
1
-function. More

precisely, we have

Lemma 2.3: Assume that (1.5), (1.6), and (2.11) hold. Then, the solution r of (2.12)

satisfies

r(t) -- + R(t) V t ) 0 , (2.13)
a(0)

where R e L (0,-).

Proof: Formally taking Laplace transforms in (2.12) and using (2.13), we find, after a

simple computation that

* -1
R(z) a(z)a(0) + a()- , z e f • (2.14)

-a'(zx)

Since a' does not vanish on H, it is clear that R is locally analytic on 1 in the

sense of Definition 2.1 of [7J (with P(t) 1 1). Observe that for z near infinity, we

have

R(z) - a"(z) 1 (2.15)______-a(0)z (.5

1 - a )'(z)

Thus R is locally analytic at infinity and R(-) - 0. Therefore, Proposition 2.3 of [7]

A1
implies that ; is the Laplace transform of a function R e Ll(O,-), and the lemma

follows easily.

It is convenient to define another kernel M by

(t) I- -It R(s)ds V t ) 0 (2.16)

For our proof of Theorem 1.1, it is essential to know that m e L (0,-) and M(0) < 1.

LUma 2.4: Assume that (1.5), (1.6), and (2.11) hold. Then, the kernel M defined by

-8-



(2.12), (2.13), and (2.16) satisfies

m e Ac[O,-) n L (0,-), M(0) - 1 -a(0 < 1 (2.17)
a(0)2

Proof: That M e AC[0,") is immediate. The claim concerning M(0) follows from (2.14)

and the facts that M(0) - R(0), a'(0) - -a(O), and a(O) > 0. To show that

m e L1 (0,-), we proceed as in the proof of Lemma 2.3. Formally, we have

-e(z)a(0)
- 

+ a'(z) 1 a(0)MC+) - - z e P{01 (2.18)

-za'fz) z za(0)
2

and it is clear that M is locally analytic on R\(0}. To study the behavior of M near

zero, we rewrite (2.18) as

a(0)-a(z) ACO)a(z)
M(z) - 0 , z e R\{}o (2.19)

za(O)a'(z) a(O) a(z)

Using Lmma 4.3 of [71 and the second part of (1.6), we find that a(0) - a(z) has a

locally analytic zero of order at least one at z - 0. Therefore, (0) can be defined in

such a way that 14 is locally analytic on ff. Finally, for z near infinity we have

N(z) - a(z)a(0) +a(z) + 1 - ;(0) (2.20)
1 - a"(z) za(0)2

from which we conclude that M is locally analytic at infinity and M(-) - 0. Therefore,

by Proposition 2.3 of (71, 1 is the Laplace transform of a function 14 e LI(0,'.), and

the desired result follows easily.

Before stating the next lemma, we introduce some notation Wiich will also be used in

the next section. For b e L 1o[0,-), we set
tbc

Q(w,t,b) :- j] w(xs) bJ h(s-T)w(x,)drdxds , v t e (0,T] , (2.21)

for every T > 0 and every w e C([D,T]I L
2
(2)). Moreover, for T > 0 and 0 < h < T,

we define the forward difference operator Ah of stepsize h (in the time variable) by

Ahw(x,t) t- w(x,t+h) - w(x,t) , V x e R, t e [0,T-hi (2.22)

for every w e C([O,T]i L 2(R)).

-9



Lema 2.5: Assume that (1.5) holds. Then, there exists a constant K > 0 such that

io J_. WtXt 2X -C K I. t.x,D),dx + cQ(w.t")

+ 6 lir nf 1 Q(Ahv ta) V t e (0,T) (2.23)

h+O h"

for every T > 0 and every v C1 ([O,Tj] L2 (R)).

Proof: We first note that (1.5) implies a(O) > 0, a e L 2(0,-), and that there exists a

constant C > 0 such that

0 4 Q(v,t.e) ( CQ(v,t,a) v t e (0,T] (2.24)

for every T > 0 and every v e C(O,T] L2 (R)), where e(t) :- et, t ; 0. Let T > 0,

h e (0,T), and w e C1(0wT]j L2 (R)) be given. The identity

a(O)Ahw(x't) - a(t)AhW(X'0) + I0 a(t'T)AhWt(xT)dT

(2.25)

- t C'(tT)&Ahw(xT)dT

can easily be checked via integration by parts. Taking square L2 (R) norms in (2.25) and

integrating the result from 0 to t, we see that

a(o) t _ 2h(, s C 0 adt)s2 dt'*-. Ahw '  ' 2 dx)

+ 3 It J. Jo a(s-)Ahwt(xT)dT2 dxde (2.26)
00h

+ J-..o{ a'(sr)Ahw(x,T)dT 2d "

It follows from (2.24), (2.26), and Lema 4.2 of (16] that

2 *xs- ("at 2 a{J. A.,02d.
h(o) iI '[hw(X. .t 0 -  h

(2.27)
+ CQ(Ahwt,t,a) + CQ(Ahlw,ta)

where C is a constant which depends only on properties of a. To obtain the desired

conclusion, we divide both sides of (2.27) by h2  and let h+0.

We close this section with a few remarks concerning the class of kernels which satisfy

-10-



I
(1.5), (1.6). As noted in Section 1, twice continuously differentiable a which satisfy

(-1)Ja(l)(t) ) 0 for all t 0 0, j - 0
,

1
,2t a' 4 0 are strongly positive definite.

(Corollary 2.2 of [13].) The interpretation of the integrability conditions in (1.5) and

(1.6) is clear. It is not difficult to impose assumptions directly on a which will

guarantee that Re a' does not vanish on R.

Kernels of the form

N -.at
a(t) := a ije , t 0 0 , (2.28)

1-1

with ai,gj > 0 for j - 1,...,N, which are commonly employed in applications of visco-

elasticity theory, satisfy (1.5), (1.6). In fact, it is not hard to show that if a

satisfies

a e c3[0,I), (-1) e( M(t) 0 V t ) 0, j 0,1,2,31

a 0, ta(t)dt <-(2.29)

then (1.5) and (1.6) hold. We remark, however, that (2.29) is by no means necessary for

(1.5) and (1.6) to hold. Indeed, one readily verifies that kernels of the form

a(t) !- e"t cos Ot. t 0 0, with v positive satisfy (1.5), (1.6).

3. Proof of Theorem 1.1.

3
Let us define X e C (R) by

X(K) :" *() - a(0)4D( ) V t e R (3.1)

We choose a sufficiently small positive number 6 and modify * and 4 (and also X

accordingly by (3.1)) smoothly outside the interval [-6,6] in such a way that *'', 4'

(and hence also X') vanish outside C-28,26] and

f'K) o t, '() ) #, x'(t) , x v E e , (3.2)

where j, , and 2 are positive constants. (This can always be accomplished in view of

(1.3).) There is no harm in making this modification because we will show a posteriori

that lux(x,t)l < 6 for all x e R, t ) 0.

-11-
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By Lames 2.1, (1.1), (1.2) has a unique local solution u which satisfies (2.2) on a

maximal time interval [0,T 0 ). We want to show that if (1.12) holds with U sufficiently

small, then (2.3) must also hold, and hence TO 0 -.

Etimates for the L
2
(3) norms of certain derivatiem of u can be derived via energy

identities. Due to the nonlinear nature of (1.1), these identities generally contain

remainder terms involving integrals over time and space of quantities which are of higher

algebraic order in derivatives of u. To draw useful conclusions from such an energy

identity we must also obtain estimates for the remainder terms. The estimation of a

remainder term often introduces new remainder terms. Therefore, the trick is to develop a

closed (or self sufficient) chain of estimates. This is an especially delicate matter here

due to the failure of Poincar& inequalities on unbounded intervals. The quantity E

defined below has been carefully constructed for this purpose.

For t e [OTo), we set

t- max +, U 2 + u2 + u2 + u2 + u2
se[t)t x- ax u+t xx Uxt tt xxx
.6(0, t]

+ 2 + u2 + u 2  }(x,s)dxUxxt xtt ttt

(3.3)

x 2  + U + u + +0o .. { +xt utt xxx Uxxt

+ uxt 2 u 2}(x s
)dxda

Xt ttt

Our objective is to show that if (1.12) holds with u sufficiently small then E remains

bounded on [0,TO). For this purpose, it is convenient to define

2 2 2 1/2,v(t) :- sup {u + u xx + u x / (x,.) V t e [0,T.0  (3.4)

se[O,t]

To simplify the notation, we write U0  end r in place of U0 (u0 ,u1 ) and P(f), and we

use r to denote a (possibly large) generic positive constant which can be chosen

independently of u0 , ul, f, and To.

As noted in Section 1, the procedure of [2] can be used to obtain estimates for

certain higher order derivatives. In fact, an inequality of the form (3.27) below can

essentially be inferred from a careful examination of [2] and a few simple c'mputations.
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For the sake of completeness (and because a few changes are needed), we repeat the

procedure of Dafeoros and Nohel to derive (3.27).

An integration by parts in (1.1) produces

utt(xt) - X(ux(x't)) + I a(tT)*(U ) (x
T
)d

i

Sxt (3.5)

+ a(t) uOxtW))x + ffx,t)

We multiply (3.5) by Cux)xt and integrate over t x (O,tJ, t e [0,T 0 ). After several

integrations by parts, this yields

I l-f(x(u ).2  + X'(U 1) (u )U 2(xt)dx + Q()(u t,a)

- : I(*.(u )U 2 + X(uo1 )(u ) )U~(x)dx

". _. jt je f'p''(u ).
3  _ X'(u )*"(u )uu

2 0 - x xt x x xt xx
(3.6)

+ XV'(U)4 (U )U t
2

)}(x,s)dxds

" I . a(s)*(u x))f(lu ) (x,s)dxd,

- J- f*(u x) t(x,.s)dxs V t e [0,T 0 )

where 9 is defined by (2.21).

To obtain the next identity, we apply the forward difference operator Ah to (3.5)

and multiply by *(ux) xt. We then integrate the resulting expression over R x [O,t],

t e t0,T 0 ). After various integrations by parts, we divide by h
2  

and let h+0. The

result of this computation is

-13-
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J.I.( )u'x 2x + X'(u )*'(u1 )u 2~)xtd + i iQh~u t,a)

1 *( ).2 + x'(u )*I(u )u 2}(x,O)dx2x xtt x x xxt

+jt ]:(- 1 "u) 2 _ 2*''(u )u u u
0 2 x xtuxtt x xt xtt ttt

" #186(U )u u 2 u + x''(u )#"(u )u ux x xtttt x x xt xxjttt

" x''(u~ )*(u )u ut +*~ u

- 2X''(u IN u lu 2 - )(( )0 1u)
x x xx xt xxt x x xxC t

- 3X'(u )*''(u )u u2 _ x'(u )*''(u )u u u(37

-Xt(u, )*$'(u )uu 2 u (x,s)dxds

0 J a'(s)*(u OxW) *uxtt~xsdd

+ a(t) 1:.[(4(u x)u Ix) (x11P(ux) t (X,t~dx

- a(O) j [(*(u x)u Ix)x W3 dx

- jt I! al(s)[(*I(u )(u ) (x)J*(u ) (xs)dxds

it ]:i~. f lu)t (x,o)dxds v t e [0,T 0

It is not a priori evident that i. I( $( t,a) exists for t e T

However, the limit of each of the other terms involved in the derivation of (3.7) exists.

Consequently, the limit in question exists (and is, in fact, nonnegative.) we add (3.6) to

(3.7), and use Lemma 2.5 (with w - V(u ) ) and (3.2) to obtain a lower bound for the left

hand side. After some routine estimations on the right hand side, this yields

2 2 2 2 a 2
J:.u x Uxt +uxxt +Uxtt Ia~td + 0 uxt (x,s)dxds

< rfu + P) + rfvft) + v(t) 3 (t) + r *u +~ v-I (t) (3.8)
0 0

V t e [0,TO)
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To give an indication of the steps involved in deriving (3.6) from (3.6) and (3.7), we

show the detailed estimation of several typical terms. The reader is cautioned that there

are many possible ways to carry out these and the numerous estimations which follow. We

note that derivatives of *, 1, and X of orders one through three are bounded on t by

virtue of our modification of these functions outside (-5,6].

Many of the terms from (3.6) and (3.7) can be handled in a very simple manner, e.g.

0 x J. ''-.utxtt ttt  ,.d.

xeit

(t I su *''(u 1 u (x@)Idxd (3.9)tuIxsIddse 0 ,t]

it -o j

C rVt) Io7 Ut~t~x" l d  3,

C Tv(t) 2 2 I(x,*)ddsrt 0 J-l t * 'ttt } x = a s

4 rv(t)z(t) v t e [0,T 0 )
0

A similar computation yields

t I f * ) (x,.s)dxds l

0 j x ,'u, Jf It! *" x'exsdxd.

t I u )u (xd s)'2.d + jtlt2 *(x )u )2 (,)d
Sr 0  - J ut 3.0

c - t1 fr (O _ (x,dxd.)2. (JO J-- u xtt(xs)dxd)" (3-0)

+ _ r I f it_ I u ,sdxd.

c r rr • +T + rv (t)22(t) v t a [OT 0)

To estimate terms such s the first integral on the right hand aide of (3.7), we

observe that the initial values of derivatives of u can be expressed in terms of u0

and u1  by using (1.1) if necessary. For example,

u (x,0) - '(u )u (x.0) + #'1(u )u 2(x,0) + f (x,0) . (3.11)
xtt x xxx x xx x

Therefore,

-15-
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j 2 (x,o)d. < r d. + r J 4 (x,0dx + r I: f2 (x,0 )d.
(3.12)

Sru0 + rv(t) 2(t) + rF v t e [0,T 0)

Of course, we could use ru in place of rv(t) 2E(t) in (3.12). However, we already have
0

a rv(t) 2(t) term in (3.10), so there is no harm in including it here. Moreover, it

simplifies matters slightly to avoid terms involving U2.

The other calculations used to derive (3.8) (and our subsequent estimates) are in the

same spirit as those shown above. It is useful to note that (1.5) implies

a,a' e L (0,-), and that (1.8), (1.9) imply f e L 2([0,-); L 2(0,-)). Moreover, we have

]0 i-. f(xt)2dxdt 4 - F, and clearly v(t) 2 4 '(t) + v(t) 3  for all t e [0,T 0)

Taking L2(2) norms in (1.1) and squaring the result, we see that

2 2
-t xtd J {*'(u x)u xx+ f 1(x,t)dx

(3.13)
t2

+- 3 j (J0 al(t-T)*(U (xT)) dT) dx
0 x x

fro which it follows easily that

2 c(,,,, r + r max j- u2 (xs)dx v t e O,T) (3.14)
Su~~tt dx se[o,t]

. similar argument gives bounds on uttt. Differentiation of (1.1) with respect to t

yields

u ttt(xt) - #'(ux)u xxt(Xt) + #''(u x)uxtuxx(X,t) + a'(t)(u Ox(x))x + f (xt)

(3.15)

+ Jt a'(t-T)(*'(U )U + '(N )u u ](x,T)dt
a x 3oct x xt oc

Squaring (3.15) and integrating over R and M x [O,t], we obtain

-u 2t (,t• dx , rfu + )+ .v.(t + r max J. u Xt (x,s)dx
seco~t]ttt se~~tj(3.16)

v t e (0,T0)

and

jt j- u2t(.,.)dxd c r.o + F) + rv(t) 2(t)
(3.17)

+ r J t i u2xt(x,.)dxd. v t e [0,T O)

-16-
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Combining (3.6), (3.14), (3.16), and (3.17), we now have the estimate

2 2 2  2 2 2
J 3M + o t U + +  tt+'l(xd t)dx

+i]:{u 2 +U2 )(x,s)dxds0 xxt ttt (3.18)

r(o0 + F} + r(v(t) + v(t)3 )xt ) + rWfiu + /) FiT)
00

V t e [0,T 0  •

we can obtain a bound for JI JI u2  by interpolation. The identitytt t
It j.2 (,d, t

0(Xs)dx " v (xa)dxda0 -extt d- 0 i- tvttt
(3.19)

+ j vttv(xxtl'O)dx J vttVxxt(xt)dx V t e [0,T 0

holds for all functions v having the regularity (2.2). (It is easy to give a formal

derivation of (3.19) via integration by parts. It can be established rigorously using

difference operators or a simple density argument.) Employing (3.19) with v f u, we see

that

It j:. U 2 <u 0 + I J, 2 + U2)(x,t)dx
(3.20)

+ r t w 2 t
0 )-.U xxt ttt lx'sldxds V t e 10,T •

TO obtain an estimate for Uxxx we set

G(x,t) s- u tt(x,t) - f(x.t) + [W'(0) - (u x)]U xx(x,t)

+ i t - ( - Ux xX,T) (3.21)

and observe that (1.1) can be rewritten as
'(0)U~x('t) + It a'(t.T)*'(0)u (XT)dT - G(x,t) ( (3.22)

Using the resolvent kernel k defined by (2.10), we solve (3.22) for uxx to get

4'(0)ux(x,t) - G(x,t) +-I t k(t-T)G(x,T)dT . (3.23)

Differentiation of (3.23) with respect to x yields

4'(0)u(xct) - aG(Xt) + IO k(t-T)GxX,)dT ( (3.24)

Since k e L (00) (by Loma 2.2), it follows from (3.21), (3.24), and a routine compute-

-17-
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tion, that

j ui U
2  (X,t)dx C rF + rv (t)2R(t) + ma u 2 (x,g)dxXX sS(0,t] t (3.25)

vte(0,T 0 )

and

it u (xua)dxd. c F +. rv(t )2 E(t) + it j: u2t (x,s)dxds
0 0 x(3.*26)

combining (3.18), (3.20), (3.25), and (3.26), we see that

2 2tJ:f 2 2 2 2 2~~~dd

(3.27)

Nu 0+ F + jv~t + ~t)3g(t)

0 vt 0)

it remains to obtain a similar estimate for

(U ~ ~ ~ ~ ~ ~ ~ ~ ~ i 2 l (~~d u2+ c,s)dxds 3.8

The imeintgra in(3.8) auss te mot dffiult. A ca besee byexamining the

To proceed further, we transform (1.1) to a more convenient form involving the

resolvent kernel r defined by (2.12). This transformation was motivated by an ides of

Maccamy (9], [101. As explained in Section 2, we assume without loss of generality that

a'(0) - -1.

Differentiating (1.1) with respect to t, we get

utt(x,t) 4( x=) - #(u (x,t)) + ital'(t-r)*(u (X,T)) d + ft(x,t) (3.29)

Solving (3.29) for flu x) xand rearranging the terms, we obtain

u tt(x,t) # (u x(x,t))M - flu x(x,t)) x+ f t(x,t)

t330



or, setting a s- aCO) and using (2.13),

u tt+ au =* fu x) xt+ ax(ux) x+ f t+ af + R*(u) x -u , (3.31)

or finally,

uttt + utt - ux )t + ux )x + t +

(3.32)
+ [R*(#u X), - u tt+ l

where th. * denotes convolution with respect to the time variable on 10,t), i.e.

(Rv)(x~t) :- jtR(t-r)v(.,Tr)dr . (3.33)

(in the above calculations, we have made use of the fact that [#(u x)x - t + fI(x.O) 2-0

which follows from (1.1).) Recall that a :- aMO) > 0 and that R e L (0,-) by Lesma

2.3.

Let us set

M I- X(x)do V g e R (3.34

and note that

W( 'C V eR (3*35)

by virtue of (1.3), (3.2), and (3.34). We multiply (3.32) by 'i and integrate over

a~ x 0,t), as before, to get

a (1 2 t ~ 1x~ix 1 2
_('~ ut + Jou J.~x d + (u )u (x,s)dxds

-jt j: 2 (x,s)dxds + it J:. ut[*#u~ - ut +f)J(xoo)dxds

ml 2
out + aV(u ) + ututu - f'i 1(x,O)dx

(3.36)

+ I.. ut-'tutt}(x,t)dx

+ J: ut[RV*(Ux)3t - ut + ffl(x,t)dx

" jt J:.afu~ fu )(x,s)dxdo V t a (0,T0

Next, we multiply (3.) by 'tt and integrate over R x (O,tj. 2nis yields



t* 2 jt 2
10 j, u (x,s)dxds - 1 'X(u x)u xt(x~s)dxds

= J...xx)u x)u ut (x,0)dx - Jo )((u x)u u t (x,t)dx

at 2
" j 0 ]:.(fu t X''(Ux)uxut(x, s)dxds (3.37)

" i J:.[.raf)*utxW) hi (x,s)dxds
0 - Ox~ x tt

+ ij it J% u [*() xsd v t e [0,T)

Adding (3.36) to (3.37), we find that

U 2 + W(u )I(x,t)clx + a(0) iJ: j .( 2u(~sd
m2 t *(~~x s xd

+ Jt j:. U [R*(u ) u + f)](x,s)dxds
0 tt x x

- r 1~ 2 + OW(u ) + utut + x'I(ux)uxu t- futl(x,O)dx

+ J:.fut - utut - X,(U")Uu u )(x,t)dx

(3.38)

+ J: (tR*(4u )x - utt + f)](X,t)dx

0 t x x xt

" it 11~ W) lu (x,)dxds
a Ox x t

+ j : u (a**(u ) ](x,s)dxds v t e [0,T)
0 tt x xt

Th~e crucial term to analyze is

f(t) :- JO J-. u tt R*(#(u x) x - u t + f)](x,s)dxdo (3.39)

(The other terms in (3.38) are favorable or can be estimated routinely.) We see from (3.1)

and (3.5) that

VUxx- u 1 t + f - a(O)4'(u)x - a~tlu Ox)x a'*(u x xt (3.40)

and substitution into (3.39) yields
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0(t) a(O) J J utt(R*(ux)](xs)dxds

- tj [Re
a

l
(s)(u ox)) u (x,s)dxds (3.41)

0 Ox X'tt

- it j u [R'*4(u x) (xt( ,. )dxd

Since R, a 0 L (0, ) and we already have estimates on third order derivatives of u, the

last two terms in (3.41) cause no difficulties. However, the first term on the right hand

side of (3.41) requires special attention.

Eploying the kernel N defined by (2.16). we find that

R**(u x)x - -M(O)*(Ux)x + NO(UOx)x + N(U x ) xt (3.42)

Recall that N e L (0,-) and M(O) < 1. We observe further that

j~ ~ j *x) 1 ~(x~s )dxds - It j:. *,(ux)u2t(x,s)dxds
it I: u t0 x- x.(

+~ I:. u x)u x (x,O)dc v x )uxt (~~x(-3

V t e [0
,O 0 )

using integration by parts. combining (3.41), (3.42), and (3.43), we arrive at the

following expression for O:

0(t) -- (O)M(O) it 
- 
*'(u x)U 2 ( x s ) dxds

" a(O) vu ( )uxt(x,O)dx - a(O) ]- #(ux )ut (x,t)dx

(3.44)

+ io j [- (Re")](s)#(u )(x))utt(xs)dxds

" It I:. uttC€. - (R*a)]**(u ) t(xs)dxds

0 ~-~x xt

Since M(0) < 1, the first integral in the above expression can be absorbed by the

second integral on the left hand aide of (3.38). Moreover, the remaining terms can be

handled rather easily. (Note that 1N (R*a)] e L since MRea e L (0,-).) After

substitution of (3.44) into (3.38), and a long computation, we obtain
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. . . . . . . . . . . .. .2.7

.(u2 + U2 }(x,t)dx + it J U2(xs)dxds
-(t x 0 J- x s d

' r(u + ri + rv(t)z(t)

(3.45)
t - 2 1/2 t- 2+ r(j 0 J u tt(x a .) dxds) J_. u t(x s)dxds)

" r max fu
x2  + U 2  + U2 l(X,)dx V t e [O,T O)

se(O,t] xt

In the derivation of (3.45), we have used the simple algebraic inequality
2 1 B2

IAB! 4 CA2 + T-B VL >o , (3.46)

to handle several terms. For example, observe that

I]'-. x'(ux)u uxt(x,t)dtl 4' J!u U (x,t)!dx
x X K xt

(3.47)

CX" u(xKt)dx + r L U 2(xt)dx V t S [O.T O)

for every C > 0, where X :- sup Ix'(&)I. on account of (3.35), , J% u 2  can be
Een 

x

absorbed by the first integral on the left hand side of (3.38) if c is sufficiently

small. The size of the coefficient L is unimportant because we already have an estimate
4C

for J: U 2 Moreover, we have made essential use of the assumption e L I(10,-)l L2(t))

to estimate J J fu since it does not seem possible to obtain a time independent bound
0 -t

fo t 
1:' U2Ufort

It follows from (3.37) and a simple computation that

j 2r0 . utt (x,s)dxds c r{u 0 + F) + rv(t)(t)

2 t - 2 s 'xds/2

+ rJo J% ut(xs)dxds)2"Jo Jt u

(3.48)

+ r max J u2t(xs)dx
se[O,t] t

+ rj 0 J: u 2t(xs)dxd. V t e (0,T O)

Combining (3.45) and (3.4A), we thus obtain
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J"{ 1. + cid +t + j { U~ + (X,G)dxds

r{u 0 + F) + rv(t)z(t)

t 0 21/, t 2 Iv(3.49).(J J 2 Cx2(, .)2,/
r(j. utt(x, adxds) 2xxtx,s)dxdo) 2

+ r max u{2  + u2  + u2 t(x,s)dxds V t e [0,T O)
se[0,t] 2ct tt

and using (3.46) with C sufficiently small, and (3.27),

jb2+ u2)(x, t)d + jtJ:{u2 + u2t + u21xu~xi
x~ u x t tt

} 
(x,sldxdo

4 r(u 0 i + r(v(t) + v(t)3}1(t)

+ r,/U + +i i- t V t [(,T o ) .

To obtain our last estimate, we go back to (3.23). Using (3.23), (3.21), and the fact

that k e L (0,0), we deduce that

J j, 2 (x,s)dxd. c rr + rv t)3(t) + r It j:. u 2(x,s)dxd
0 x 0 xx

(3.51)

V t e (0,TO)

combining (3.50) and (3.51), and adding the result to (3.27), we conclude that

x(t) < r{u + 11 + r(v(t) + v(t) 3 (t) + r(/u-0 + '61 /(t)0 0 (3.52)

V t e [0,T O)

and using (3.46), we finally arrive at an estimate of the form

B(t) < (U 0 + F) + RV(t) + V(t) 3 E(t) V t e (0,T0  , (3.53)

where T denotes a fixed positive constant which can be chosen independently of uo, ul,

f, and T.

We choose 3, i > 0 such that

i < 2, z (2*i)3/2, 2. , (.54,

(Here 8 is the constant that was introduced in the first paragraph of this section.)

Suppose now that (1.12) holds with the above choice of V. It follows from the

Sobolev embedding theorem that
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uct) -9 /23(t) v t e 10,T,(355

We therefore conclude from (3.53). (3.54), and (3.55) that for any t e 1O,T0 ) with

2(t) Cj we actually have E(t) C 2. Consequently, by continuity,
2

3(t) < V t e [O,1O) (3.56)

provided that Z(0) < -1 i.
2

We can always choose a smailer u > 0 (if necessary such that (1.12) implies

3() IC -i3. (observe that (3.54) still holds if the size of 1A is reduced.) Thus, if
2

(1.12) is satisfied with our revised choice of ui then (3.56) holds. This implies To

by Lewma 2.1. In addition, it imumediately yields (1.13) and (1.14) from which (1.15) and

(1.16) follow by standard embedding inequalities. Finally, we note that

1u1x(x,t) I < VW (t) / < 8 V ~xe R, t > 0 - (3.57)

by (3.4), (3.55), (3.56), and (3.54). The proof of Theorem 1.1 is complete.
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